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ABSTRACT
We present a modular architecture that enables advanced surveillance

functions exploiting data collected from heterogeneous sensors dispersed over
multiple, often mobile platforms in the field. Examples of such functions are red
forces tracking with surveillance gaps, detection of different types of anomalies,
search and rescue operation monitoring, and threat alerting. This novel approach
combines a distributed fusion engine, an intelligent process manager, and a
system of ruggedized computers, enabling information processing in the tactical
domain. The hybrid AI-based heterogeneous fusion engine consists of different
algorithms, including various detectors and classifiers, represented as services
in a light-weight information management and interoperability layer. This
architecture layer enables context-dependent discovery of the right sensing and
processing services at runtime that are combined using a robust Bayesian fusion
layer exploiting complex correlations in the data. The discovered services are
distributed over a network of computing nodes by an intelligent process manager,
which optimizes network resource allocation according to communication and
processing capacities. The fusion engine and the process manager are delivered
to the tactical domain using the ruggedized SOTAS computing and communication
infrastructure, achieving efficient, actionable, timely, and consistent situation
awareness in constrained domains, such as military vehicles.
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1. INTRODUCTION
The number of sensors on the battlefield is

strongly increasing [1–3]. To avoid information
overload, an approach is needed to fuse information
from heterogeneous sensors in order to get
actionable, timely, and consistent situational
awareness (SA) in constrained domains, such
as military vehicles. The great independence,
computing power and storage capabilities of modern
military vehicles offer the possibility to process raw
information streams and exchange them over limited
bandwidth. Thus, in a “mix of means approach” in
the mobile domain, there are network nodes with
very different capabilities and limitations. They may
or may not have specialized computational capacities
or strong communication potential. In order to fuse
information giving a better SA, and to optimally use
the limited resources in the field, three key challenges
need to be addressed:

(1) distributed fusion of information from
heterogeneous sources;

(2) computational and communication constraints
in network resources allocation;

(3) platform supporting C4I (command, control,
communications, computers, and intelligence)
in constrained environments.

This paper introduces a modular architecture that
addresses these challenges. It enables advanced
surveillance functions exploiting data collected
from heterogeneous sensors dispersed over multiple,
mobile platforms in the field. Examples of such
functions are red forces tracking with surveillance
gaps, detection of different types of anomalies,
search and rescue operation monitoring, and threat
alerting. This novel approach combines a distributed
fusion engine, an intelligent process manager, and
a system of ruggedized computers, supported by
mechanisms to dynamically allocate fusion functions
to processing nodes, without user intervention, to

optimally use network resources for information
processing in the mobile tactical domain.

The hybrid AI-based heterogeneous fusion
engine introduced in Section 2 consists of
different algorithms, including various detectors and
classifiers, represented as services in a light-weight
information management and interoperability layer.
This layer enables context-dependent discovery of
the right sensing and processing services at runtime,
which are combined using a robust Bayesian fusion
layer into composite fusion functions to exploit
complex correlations in the data.

The discovered services are distributed over
a network of computing nodes by an intelligent
process manager introduced in Section 3. It aims
at optimizing network resource allocation according
to communication and processing capacities.
The manager addresses a specific combinatorial,
multi-objective and constrained optimization
problem in order to determine an efficient and
reliable fusion network topology. Different
evaluation metrics and means of implementation are
discussed therein.

The fusion engine and the process manager
are delivered to the tactical domain using the
ruggedized SOTAS computing and communication
infrastructure presented in Section 4. This
is a multimedia vehicle communication system
developed by Thales Nederland providing a
reliable, proven, interoperable and secure data
and communication infrastructure for information
sharing and communication inside constrained
platforms, such as military vehicles and shelters [4].

1.1. Motivating Example
Figure 1 presents a simplified red forces tracking

example with multiple sensors: an advanced
counter-battery radar (COBRA) on vehicle v1; two
simple acoustic sensors that can detect and recognize
sound of heavy vehicles, installed on vehicles v2 and
v4; a dismounted Doppler radar next to vehicle v2;
and a drone with a camera, a stationary camera, and
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a seismic sensor in the area of vehicle v3.

Figure 1: Representation of the red forces tracking
example. The red vehicle corresponds to red forces
moving through a partially observed area. Different
types of sensors cover parts of the area and there exist
significant surveillance gaps.

The tactical task in this example is to track
the position of red forces, a heavy mobile mortar.
Initially, the red forces fire with the mortar, which
is detected and localized by the COBRA sensor.
However, after a short firing period, the red forces
move through an area that is not within the field of
view of any available sensor. During this phase, the
possible whereabouts of the red forces have to be
estimated by combining different types of context
information, such as the mobility in the area (e.g.
water, solid ground, swamp, etc.) as well as sensor
observations and detections, or the lack thereof,
in different parts of the area of interest. In our
example depicted in Figure 1, it could be inferred
that, after losing the initial contact, the red forces
should be within an area surrounded by the water
and a zone monitored by sensors that do not observe
any moving target. Such conclusions, however,
could only be made if the correlations between
heterogeneous sensor signals and the properties of
the environment are understood. The data must
also be communicated to the right processing node,
on time, and under typical operational constraints
(physically distributed assets, limited computation

and communication capacity, misaligned sensors,
etc.). Section 5 illustrates how this can be achieved
for this example using our integrated architecture.

2. HETEROGENEOUS FUSION ENGINE

The Heterogeneous Fusion Engine enables
extraction of actionable information from complex
combinations of data produced by heterogeneous,
spatially distributed sources. Such fusion is an
enabler of advanced decision support functions,
such as red forces tracking, detection of different
types of anomalies (pattern-of-life), search and
rescue operation monitoring, and threat alerting.
The Heterogeneous Fusion Engine combines a
modular high-level fusion approach (Section 2.1)
with a light weight interoperability and information
management layer (Section 2.2). These techniques
enable loosely coupled modular fusion solutions that
can be distributed over multiple processing nodes
and exploit different types of algorithms. The
approach has proven its merits in different real world
settings, such as intrusion alerting and counter drone
applications using multiple, heterogeneous sensors.

2.1. High-Level Fusion Based on Hybrid AI

Many types of decision support functions rely
on the estimation of possible whereabouts of
an object over time. By using the methods
discussed in [5], such estimation can be formulated
as the computation of a probability distribution
p(xt|z1:t, ϵm1:t, ϵs1:t). Here, xt denotes the target’s
location at time t and z1:t represents a sequence of
sensor observations collected up to time t. Moreover,
ϵm1:t and ϵs1:t denote sequences of sets of reports
about the target’s mobility and sets of reports about
the factors influencing the sensor/detector outputs
collected up to time t, respectively. An observation
zt can represent different types of measurements
as well as detections or classifications at time t.
Key to efficient computation of p(xt|z1:t, ϵm1:t, ϵs1:t) is
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recursive Bayesian inference:

p(xt|z1:t, ϵm1:t, ϵs1:t) =
ηp(zt|xt, ϵ

s
t)p(mt = true|ϵmt )

·
∫

p(xt|xt−1)p(xt−1|z1:t−1, ϵ
m
1:t−1, ϵ

s
1:t−1)dxt−1,

(1)

where η is a normalizing constant, p(xt|xt−1) is
the dynamic model of the target in case of full
mobility, while factors p(mt = true|ϵmt ) and
p(zt|xt, ϵ

s
t) represent uncertain knowledge about

the target’s mobility and operational conditions
influencing sensors, respectively. ϵst ⊆ ϵs1:t denotes
a set of reports about the operational conditions that
influence a specific sensor/detector and were known
at time t, when this source produced output zt.
Similarly, ϵmt ⊆ ϵm1:t represents a set of reports about
the target’s mobility mt known at time t. Equation
(1) is a version of the Context-Boosted Particle Filter
[6], an approximate inference approach combining
sequences of sensor observations with information
about the physical limitations of the target. It is a
factorized representation, where each factor can be
obtained independently, some of them being a result
of elaborate processing. In the presented approach,
the determination of p(zt|xt, ϵ

s
t) is based on causal

Bayesian Networks (BN) that efficiently capture
complex correlations between the observations and
various influences on the sensor, such as weather,
time of the day, season, etc. An example Bayesian
model for a Micro-Doppler detector is shown in
Figure 2, where w, r and e denote respectively the
wind conditions, precipitation (rain, hail, snow), and
the presence of moving reflecting surfaces within the
sensor’s field of view, such as tree leaves. w and r
influence the detection rates, denoted by d, and the
noise, denoted by n, resulting in false detections.
n is also influenced by e. For example, in case of
strong winds, the movement of tree leaves within
the sensor’s field of view could be a source of
increased false positive rates. The graph shown in
Figure 2 encodes a factorization of a joint probability

distribution over the set of variables:

p(zt, xt, r, w, e, d, n) = p(r)p(w)p(e)p(xt)

· p(zt|d, n)p(d|xt, r, w)p(n|r, w, e)
(2)

This factorization enables efficient computation
of p(zt|xt, ϵ

s
t = {r, w, e}), essentially a

marginalization of unobserved variables d and n in
p(zt, xt, r, w, e, d, n). Such models support local
fusion of the information ϵst about the sensor’s
environment to determine the impact p(zt|xt, ϵ

s
t) the

observation zt has on the overall fusion described by
equation (1).

The presented Bayesian sensor models can be
used as wrappers of different sensors/detectors,
facilitating combination of multiple heterogeneous
components into coherent systems that can distill
actionable information from disparate data. Namely,
outputs of different types of sensors, detectors, and
algorithms are efficiently translated to probability
distributions p(zt|xt, ϵ

s
t), which in turn facilitate

composition of complex Bayesian inference
processes according to equation (1). For example,
drones equipped with Electro-Optical (EO) sensors
in combination with deep neural networks (DNN)
detecting people or vehicles can be an excellent
source of inputs to a larger fusion task, such as
red forces tracking. The neural networks can
be placed on the drone or in a vehicle to which
the imagery/video is streamed. The detection
results zt are processed by a local BN that outputs
p(zt|xt, ϵ

s
t), where ϵst represents the drone’s context,

such as visibility, wind, distance and angle of
observation. This is an example of a relevant
multistage integration pattern illustrated in Figure 3.
Raw sensor signals are first interpreted by a specific
algorithm, such as a data association or tracking
algorithm, various types of detectors and classifiers
based on neural networks, etc., represented by green
boxes in Figure 3. The outputs of these processes
are used by a Bayesian sensor model (light blue
boxes) that translates specific outputs of the local
signal processing to “fuseable” messages in form of
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probability distributions p(zt|xt, ϵ
s
t).

Moreover, the probability p(mt = true|ϵmt )
representing the chance that a specific type of target
can move in a certain area is another factor that
can be computed in an independent process [5].
This factor is obtained through the fusion of
different types of information about the mobility
stemming from geographic information systems
(GIS), intelligence collected by people in the field,
as well as automated processing of satellite imagery.

Figure 2: Bayesian sensor model.

Figure 3: Examples of mappings between sensor
signals and interoperable messages in the form of
probability distributions.

Overall, the factorization of equation (1) and the
presented Bayesian sensor or detector models are
key to powerful hybrid AI solutions obtained through
combination of different types of sensors and
algorithms. The advantage of this approach is that
such composite solutions can handle complex data
patterns efficiently and support dynamic inclusion of
new data sources or processing assets at runtime. For
example, if a new drone with an EO sensor enters
the area of interest, its outputs are automatically
processed by a dedicated DNN and a local BN sensor
model, transforming the sensor signals into a factor

p(zt|xt, ϵ
s
t) that can be fused at a higher level, by

simply including it in equation (1).

2.2. Fusion Engine Architecture
The key to distilling actionable intelligence, that

is hidden in complex data patterns, are systems of
functions that filter and interpret combinations of
correlated data. By composing different factors
from equation (1), the raw data is gradually
transformed into actionable intelligence. Figure 4
shows an example of such a composite fusion
system, a combination of computing services
dynamically formed at runtime, implementing
inference according to equation (1).

Interoperable functions and sensors. A
composite fusion system consists of multiple
functions ranging from simple filters to fusion
functions computing factors in equation (1). These
functions have to interoperate such that the output
of a single function can be used as an input for one
or more other functions. This requires an integration
backbone allowing (i) composition of functions, (ii)
activation of these functions on demand, and (iii)
dynamic formation of information flows between
them.

Figure 4: A composite fusion system.
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Moreover, all functions and data sources
(sensors, databases) should be represented as
interoperable services that can be combined
into composite solutions. Dynamic Process
Integration Framework (DPIF) [7] supports the
implementation of integration backbones addressing
the above-mentioned requirements. The DPIF
architecture introduces a thin “standardization”
layer, that enables interoperability between different
services. This is achieved in a modular way by
using a novel way of representing services, with tools
and patterns to enable description of these services
(metadata on capabilities and context) [8].

Service composition and information flows. The
DPIF architecture supports dynamic activation of
suitable services in the context and creation of
information flows between them. By specifying
the need for a certain type of information and the
context (e.g., area of interest), the right services
are automatically combined. The resulting system
of cascaded services is a composite function that
includes all data sources and functions relevant for
the task at hand; An example of such a composite
function is red forces tracking.

Figure 5: DPIF agents (hexagons) representing
various services. The yellow arrows denote
remote communication between the services. The
agents form a lightweight interoperability and
information management layer (represented by the
gray rectangle).

Architecture and deployment characteristics.
The basic architectural elements are service agents,
engines that efficiently capture the incoming and
outgoing interface adapters (metadata that describes
a service, its inputs, and its context), see Figure 5.
The interface adapters introduce interoperability and
manage information flows supporting fast extension
of the platform with new functions, data sources, and
interfaces.

From an operational point of view, DPIF-based
solutions are distinguished from other information
distribution approaches by their scalability and
dynamic character. Sensor and function invocation
is determined on-the-fly, based on the context, which
allows dynamic joining and leaving of sensors and
functions during the lifetime of the system. As DPIF
supports dynamic creation of information flows,
such services are automatically made available and
become part of an already running fusion process,
if relevant (hot plugin). This enables a new way of
working, where a crew member, by indicating an
area on a screen, gets the fused information from
all (authorized) sensors in the network that have
information about that area.

Moreover, the architecture is designed to support
deployment over a network of computing nodes. This
is important, as the services often belong to different
owners with stringent security measures. In such
cases, the service can be hosted locally to ensure
data security, while the agent exposes only the agreed
types of standardized information with the rest of the
system. In this way, the data owner controls when
and under what conditions service data is shared.
Moreover, the owner has control over the service
visibility in the service discovery processes (runtime)
as well as in the configuration process (design time).

The functions connect using service types [8],
defining (i) services that functions provide to others
in the network and (ii) services these functions need
to operate. Figure 6 presents a logical view of
functions and sensors that connect with services
(the colored circles). Note that, the functions
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and sensors exchange information with the services
they need directly, using (logical) peer-to-peer
communication lines. For example, in the figure,
the top function provides the service of type A and
requires information from services of type B, C, and
D, respectively. The hexagons in the figure represent
agents that (1) enable dynamic configuration of
the services, (2) wrap the function or interface to
a remote process and (3) maintain the interaction
between services and function.

Figure 6: Logical view of DPIF agents connected in
a fusion system, where the colored circles represent
services provided/required by the functions and
sensors.

Wrapping the functions in DPIF service agents
allows for isolating the deployment of the
functions, such that they can be distributed.
Another added value of the structure with
direct communication lines is the decentralized
communication pattern (i.e., services locally
organize the communication links and do not require
a central orchestration). A consequence of having
a decentralized communication pattern is the need
for a discovery mechanism: consumers of service
data need to find the potential suppliers. DPIF uses
a discovery mechanism in the form of a lookup
table, which works as a catalogue of potential
service providers, the contact information of the
potential service provider is then used to negotiate
a direct communication link. For example, in
Figure 6, the top node is interested in contact

information for the services of types A, B and
C in a certain context. Once it obtains their
details, a communication link can be established
and the functions or sensors are able to exchange
information. This mechanism of looking up service
providers to establish communication links is a
critical point for the system to work. However, a
function is actively looking for data providers only
during the initiation of the information flow and this
requires little bandwidth since only agent addresses
are exchanged.

3. INTELLIGENT PROCESS MANAGER
The choice of a network topology in the context

of data fusion from multiple sensors can have an
important impact on the network’s efficiency and
reliability. In a centralized architecture, all data
from the sensors is sent to a central processing node
where the fusion happens and the results are then
sent to the users. The advantages of a centralized
topology are the fact that this is technically relatively
simple to realize, and that the facilities (operating
conditions) at the central location can be optimized.
These facilities can be related to (perimeter) security,
protection against attacks and conditions to operate
(ventilation, energy). The main disadvantage of a
centralized topology is, however, the fact that it has
a single point of failure: the center of the network.
On the other hand, a distributed architecture includes
more than one processing node in the network, and
fusion thus happens in more than one place before
reaching the users. According to Liggins et al. [9],
this type of architecture includes, but is not limited
to the following advantages:

[. . . ] lighter processing load at each
fusion node due to the distribution
over multiple nodes; no need to
maintain a large centralized database
since each node has its own local
database; lower communication load
since data does not have to be sent
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to/from a central processing site; faster
user access to fusion results since there
is less communication delay; and higher
survivability since there is no single
point of failure associated with a central
fusion node. (pp. 95-96)

However, a distributed system also comes with
a considerable technical complexity in network
architecture, communication links, and fusion
algorithms.

3.1. Problem Definition
In our approach, the intelligent process manager

solves the problem of selecting the best fusion
network topology based on information flow and
physical network constraints. This selection includes
deciding the communication flow within the network,
while also choosing how to allocate the required
fusion functions to the processing nodes. The
topology must also satisfy the information requests
of end users.

Formally, this problem starts with a given
(directed) network, N = (N,L). The set N contains
the nodes of the network, and L ⊂ N ×N forms the
set of links. For two distinct nodes i, j ∈ N , we have
(i, j) ∈ L if there exists a communication link from
node i to node j. We distinguish three types of nodes
in the network:

a) Sensor nodes, nodes that can produce, and
transmit data into the network, typically
sensors. They form the subset NS ⊆ N ;

b) Processing nodes, nodes that can receive,
process and transmit data into the network,
typically computers on which the fusion
algorithms can be executed. They form the
subset NP ⊆ N ;

c) Human-Machine Interface (HMI) nodes, nodes
that can receive fused data from the network,
typically representing users. They form the
subset NH ⊆ N .

Figure 7 is an example network N = (N,L)
composed of six nodes, N = {n1, n2, n3, n4, n5, n6},
two of which are sensors (NS = {n1, n2}), three are
processing nodes (NP = {n3, n4, n5}), and one is
an HMI (NH = {n6}). In this representation that
we call the network graph, an arrow from node ni to
node nj means that there exists a communication link
from ni to nj , i.e. (ni, nj) ∈ L.

Figure 7: Network graph example.

Data fusion, as seen by DPIF, is composed
of independent fusion functions and information
flows. In fact, each fusion function combines a
set of distinct information types into another set of
distinct information types. For example, a filtering
function could be transforming a “raw sensor 1” data
to a “filtered sensor 1” data, and a particle filter
transforming “filtered sensor 1” and “filtered sensor
2” data into “combined sensors” data. Thus, in
order to reach a particular information (fused) type,
data must go through a number of fusion functions
in a particular order, following a predetermined
“path”. We make here the assumption that there is
always only a single way of producing any type of
information (unique path), and that a transformed
type of information cannot be produced again (no
cycling path). This assumption ensures the global
fusion process is hierarchical and without feedback
(see e.g. [9]). Formally, let T be the set of
information types, and F the set of fusion functions.
Each fusion function f ∈ F is associated with
non-empty sets of input types T I

f ⊆ T and output
types TO

f ⊆ T . These sets must satisfy the
above-mentioned assumptions in order to define a
feasible information fusion flow.
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Figure 8 is an example of a feasible information
fusion flow composed of three fusion functions,
F = {f1, f2, f3}, and 5 information types, T =
{t1, t2, t3, t4, t5}. In this representation that we call
the fusion graph, an arrow from type ti to function
fj means that ti is an input type of function fj , i.e.
ti ∈ T I

fj
. Similarly, an arrow from function fj to type

ti means that ti is an output type of function fj , i.e.
ti ∈ TO

fj
.

Figure 8: Fusion graph example.

Each sensor node s ∈ NS in the network must be
associated with the unique information type ts ∈ T
it is producing. This type cannot be produced by
any fusion function in F . Similarly, each HMI node
h ∈ NH must be associated with an information type
th ∈ T which represents an information request.

The problem asks, given a network and a feasible
information fusion flow, to find a fusion network
topology. A solution to this problem must define a
communication flow within the network, i.e., decide
for each link (i, j) ∈ L if the information type t is
sent from node i to node j. Here, we assume that
we cannot partially send data from a node to another
in the network. Simultaneously, this solution must
choose the allocation of the processing algorithms in
the network, i.e. decide for each fusion function f ∈
F if it is executed on the processing node n ∈ NP .
The choices must follow the fusion information flow,
while satisfying the sensor data production and HMI
information requests.

For example, using the network graph from
Figure 7 and the fusion graph from Figure 8, as well
as assuming that sensor node n1 produces type t1,
sensor node n2 produces type t2, and HMI node n6

asks for type t5, a possible solution could be the
one presented in Figure 9. In this representation

that we call the solution graph, an arrow from node
ni ∈ N to node nj ∈ N with label tk means that this
topology sends information type tk ∈ T from ni to
nj . Furthermore, a label fw within a processing node
n ∈ NP means that the fusion function fw ∈ F is
executed on this node.

Figure 9: Solution graph example.

3.2. Evaluation Metrics
In general, there will be more than one

feasible network topology for an instance of
the above-described problem. For example, a
fully centralized solution would allocate all fusion
functions to a single processing node. Nevertheless,
we posit that some topologies are better than others.
In order to evaluate the quality of a solution, the
intelligent process manager considers the following
three metrics:

1. Network delay, evaluating the total time it
takes for the network to communicate and
process the data from the sensors to the HMI
nodes;

2. Links usage, evaluating the network
communication resource usage in terms of
data amount being sent, herein as the average
communication time on a link over all network
links;

3. Nodes usage, evaluating the network
processing nodes usage in terms of required
processing power, herein as the average
processing time on a node over all network
processing nodes.
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Note that using time instead of data as the
basic units for the last two metrics allows them
to be weighted by the capacities (throughput,
performance), where freeing a high capacity resource
has less impact than doing so for a low capacity
resource. Also, we use the average in order to ease
comparison with different network setups.

According to our requirements analysis, these
three elements can be theoretically evaluated by
making the following assumptions:

• The data flow through the network is of a single
“time step”, i.e. of one iteration of information
flow from the sensor nodes to the HMI nodes;

• The throughput is stable and not affected by the
amount of data transferred;

• No data leak happens during transmission or
processing;

• Each node handles parallel computation for
fusion functions when possible, without any
performance loss.

Table 1: Additional parameters for solution
evaluation.

ps Data amount (b) produced by s ∈ NS

bl Throughput (b/s) of l ∈ L

on Performance (FLOP/s) of n ∈ NP

mn Memory access speed (b/s) of n ∈ NP

Qf Function giving the data amount (b) of each
type in TO

f after using f ∈ F , given the data
amount (b) of each type in T I

f

Of Function giving the required performance
(FLOP) of f ∈ F , given the data amount
(b) of each type in T I

f

Mf Function giving the required memory access
(b) of f ∈ F , given the data amount (b) of
each type in T I

f

We must also provide the additional parameters
listed in Table 1. Given the quantity of data
transferred ql over the link l ∈ L, the communication
time is obtained by ql

bl
. Furthermore, given the

performance of and memory access mf requirements
of a fusion function f ∈ F executed on a processing
node n ∈ NP , the computation time is obtained by
of
on
+

mf

mn
, i.e. the sum of the performance and memory

access times.
To illustrate this approach, these metrics

have been evaluated for different fusion network
topologies on a realistic drone tracking use case. The
latter involved four Doppler radars, each connected
with high throughput to a performance-limited
(“small”) node, each of them connected with limited
throughput to a single high-performance (“big”)
node associated to an HMI. The fusion flow required
resulting tracks on the HMI distilled by a particle
filter from the four processed data by the respective
radar models. Results are presented in Table 2. The
Centralized case assigned every fusion function to
the big node. The Distributed case allocated the four
radar models to their associated small nodes, while
the Hybrid case distributed only two radar models.
Alternative topology possibilities were analyzed in a
similar way.

Table 2: Evaluated metrics for the drone tracking use
case.

Case Network
delay (s)

Links
usage (s)

Nodes
usage (s)

Centralized 16.695 0.98463 0.82610
Distributed 11.314 0.22080 0.85267
Hybrid 16.695 0.60271 0.83939

Depending on the chosen metric(s) as its
optimization objective, the processing manager
determines a different optimal topology. In this case,
to minimize network delays or links usage, it would
have selected a distributed setting. To minimize
instead the nodes usage, and thus maximize
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the remaining processing capacity, it would have
selected a centralized topology.

3.3. Means of Implementation
In the literature, a myriad of problems has been

formulated for wireless sensor networks optimization
whether to solve design, deployment, or planning
questions [10, 11]. Those formulations include many
optimization objectives, ranging from minimizing
network delays to maximizing the network coverage.
The latter is often highly related to the problem
of sensors selection for fusion, which has been
highly studied [12]. Furthermore, our intelligent
process manager problem bears resemblance with
many network distribution design problems, notably
the ones involving transportation and facility location
decisions. A key difference, however, is that fusion
changes the amount of data exiting each processing
node, so that standard flow conservation rules can’t
be applied.

The intelligent process manager’s problem,
as defined in Sections 3.1, can naturally be
formulated as a combinatorial, multi-objective and
constrained optimization problem. Indeed, since
the decisions to make involve a finite number of
discrete possibilities, with each fusion function either
executed on a node or not, and each information
type either communicated by a link or not, the
solution space clearly involves a combinatorial
aspect. Furthermore, considering the network and
fusion graph structures, besides having information
production and requests, as well as other potential
technological requirements and limitations, the
problem must contain a considerable number of
constraints restricting the solution space. Finally, the
multi-objective aspect comes from the consideration
of more than one criterion to optimize, potentially
simultaneously, as presented in Section 3.2.

In order to model, implement and solve
the problem, a state-of-the-art combinatorial
optimization paradigm could be used, such
as Constraint Programming or Mixed-Integer

Programming. These methods have the advantage
of supporting rather straightforward mathematical
formulations, as well as an indefinite number
of various constraints, which makes them easily
extensible. Plus, they are exact, i.e. they are
guaranteed to find an optimal solution while
proving its optimality. To our knowledge,
no specific algorithm currently exists for this
optimization problem. Note that we are aware of
ways to develop non-exact approaches providing
near-optimal solutions, such as genetic, particle
swarm optimization based, evolution based, custom
heuristic and metaheuristic algorithms (see [10]).

The development and testing of the optimization
component is currently ongoing work. To
validate the feasibility of our approach, we have
first implemented a brute-force (exhaustive) search
method. However, the execution time of the the
brute-force method increases exponentially with the
number of nodes in the network, thus showing
the need to develop more robust and scalable
optimization methods.

4. SOTAS COMMUNICATIONS SYSTEM
The heterogeneous fusion stack and intelligent

process manager are supported in the mobile tactical
domain by the Application Hosting functionality of
the versatile SOTAS multimedia communications
system [4]. SOTAS is a family of IP-based
robust mobile communication, data transfer and
computing platforms specifically designed for
platforms operating in constrained conditions,
such as alongside railroads, on oil platforms, and
in military vehicles. The computing platforms
(server units) support hosting of different types of
applications (own or 3rd party). SOTAS provides
high-quality voice and data services, such as
intercom, telephony, radio, IP/Ethernet networking
services (routing, switching), and server computing.

When looking at the architecture of a military
vehicle, one can distinguish the local domain,
where the information of sensors associated to the
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vehicle is collected. Typical sensors are infrared
cameras (mounted on the vehicle or on a UAV that
is connected to the vehicle), laser-range finders,
acoustic sensors, and radar systems (Figure 10).

Figure 10: Sensors mounted on a vehicle.

There is also the C4I-domain where the local
information is combined with information from
other platforms in the field. To that order, many
types of external long-range data connections
with different technologies are supported by
SOTAS. Examples are narrowband VHF-radios,
characterized by omnidirectional behavior, long
distances, and a low data rate; UHF radio’s,
characterized by higher bandwidths and shorter
distances (compared to VHF), directional radios; and
satellite communication systems.

SOTAS can operate in both the local as well as the
C4I-domain, and can also be employed to achieve a
separation between those domains.

The SOTAS system consists of the following
components (Figure 11). The Tactical Network Node
(which consists of a number of layers determined by
functional demands) is a central device that provides
communication and data services. The audio services
are of high quality and include audio processing (e.g.,
addition of audio streams, and encoding of different
streams). Provided data services are Ethernet
switching and IP routing. The Server Units of the
SOTAS product family support application hosting,
with an application server that can host different
3rd-party applications (such as the fusion engine and
the intelligent process manager introduced herein,

or battlefield management system applications). In
addition, the SOTAS family contains a time server
to provide accurate timing (for example, to support
radios) in case the timing from external sensors
(GPS) is lost in a GNSS denied environment.
To further improve voice quality and reduce the
cognitive load of the vehicle crew, Dynamic Noise
Reduction is supported, assuring crystal clear speech
over the intercom or radio, optimizing battlefield
endurance. The SOTAS system is modular, and
composed of different layers that provide different
functionality, targeted to the specific role of the
vehicle.

Figure 11: (top) Four elements of the SOTAS product
family; (bottom) Example application in a military
vehicle.

The Soldier Machine Interfaces (SMI) come
in different variants. The SMI (Panel) provides
a large display, with a standard way to select
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different applications inside that display. The
Tactical Advanced User Station is a unit that provides
access to communication services, audio services,
and advanced capabilities like management and
maintenance (crew box type of unit). Finally, the
Tactical User Station is a unit that provides access
to the communication services, audio services, and
basic channel selection capabilities.

5. INTEGRATED APPROACH

This section illustrates the integrated approach
using the red forces tracking example from
Section 1.1. Following the scenario in Figure 1,
four military vehicles, v1, v2, v3, and v4 moved
to the indicated positions, each providing specific
surveillance assets. Vehicles v1, v3 and v4 are
equipped with a powerful SOTAS Server Unit, while
v2 uses a low-performance PC enhanced with an
accelerator for processing of neural networks. v1 is
directly connected to the COBRA sensor, as well as
the SMI SOTAS component for this mission (HMI).
v2 carries an acoustic sensor (Acoustic 1) and is
directly connected to the dismounted Doppler radar.
v3 is connected via a local military Wi-Fi to the
stationary camera and the seismic sensor. Moreover,
v3 has an interface to the imagery of a drone system
controlled from that vehicle. Vehicle v4 carries
another acoustic sensor (Acoustic 2). The processing
nodes from v1, v2 and v3 can communicate via a
radio tactical link with medium bandwidth, while v4
can communicate with v1 via a satellite link with
limited bandwidth. This current network structure is
captured in the network graph of Figure 12. Note that
in this example the target’s motion and the outputs of
the surveillance assets are simulated.

Figure 12: Network graph of the red forces tracking
example.

Based on the initial intelligence about the
presence of red forces, the operator instructs the
system to start the red forces tracking function in
a certain surveillance area. This triggers the DPIF
mechanism to determine the relevant sensors and
fusion functions that should be composed into this
tracking function. This information is compiled in
the fusion graph of Figure 13.

Figure 13: Fusion graph of the red forces tracking
example.

The intelligent process manager is supplied
with the network graph, the fusion graph, and
the information about the available services on the
nodes1. Satisfying the different physical constraints,
and minimizing the overall network delay, the
process manager determines the optimal fusion

1For the purpose of the example, we assume that each compute node has the local copy of the various functions such that the
intelligent process manager can decide where to start the function.
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network distribution illustrated on the solution graph
of Figure 14. According to this solution, v2 PC runs
the local sensor models as well as the neural network
for the sound classification using its accelerator.
Vehicle v3 handles the Bayesian models for the
camera, the drone and the seismic radar, as well as
two neural network classifiers. v4, similarly, treats
acoustic data from another area with a neural network
pre-processing.

Figure 14: Initial solution graph of the red forces
tracking example.

The fusion network topology provided by the
process manager is used by the heterogeneous
fusion engine as a set of instructions for the DPIF
mechanism to activate different types of services
on the chosen computing nodes, and establish the
information flows among them. In this way, the
fusion engine forms a composite fusion system
similar to Figure 4, essentially implementing a
distributed version of equation (1) that is adapted to
this specific constellation of sensors and operational
constraints. In this context, the data from each
acoustic sensor goes through a neural network
classifier recognizing the sound of armored vehicles.
There is also a specific neural network for each
video stream from the camera and the drone used
to classify and localize heavy vehicles. The local
Bayesian sensor models translate outputs of various

signal processing solutions to a format that can easily
be used by the particle filter to generate the resulting
estimates of the whereabouts. The estimation results
are sent to the vehicle v1 SOTAS node and displayed
in the form of heat maps on the HMI as shown in
Figure 15. The presented heat maps are output of a
real distributed fusion process with simulated target
movements (red circle) and sequences of simulated
sensor/detector outputs. The color of the heat map
corresponds to the probability that a target is at a
certain location; the warmer the color, the higher
the probability. Heat maps “encode” the entire
information absorbed through the fusion of complex
time series consisting of heterogeneous data types.
The computation of the heat maps is carried out
by the Context-Boosted Particle Filter that supports
inference over space and time, given the sequences
of observations as well as the lack thereof (see
Equation (1)).

Figure 15: A sequence of estimated whereabouts of
red forces using simulated target and sequences of
sensor measurements.

Figure 15.a shows the moment the target was
detected by the acoustic sensor on vehicle v4. After
a while, the target left the field of view of this
sensor and entered the surveillance gap. From
this point on, no contacts could be made with the
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target for a prolonged period of time. Figures 15.b
and 15.c show the estimated whereabouts in this
period of time. Despite prolonged periods in the
surveillance gaps, the uncertainty of the target’s
position remained limited. This was possible because
the fusion considered the fact that the Doppler radar,
the stationary camera and the seismic sensor have
not produced any detections in their fields of view
during that period. This meant that the red forces
have not attempted to cross the bridge or the area
south of vehicle v4. Moreover, by being able to use
the information about the areas in which the heavy
mobile mortar cannot move, such as the river, a lake,
and a swamp, the uncertainty of the whereabouts was
additionally reduced, as shown by Figures 15.b and
15.c. Finally, the red forces entered the field of view
of Acoustic 1. While this sensor is very imprecise,
Figure 15.d shows that the uncertainty about the
possible whereabouts was significantly reduced.

Figure 16: Alternative solution graph of the red
forces tracking example following a processing node
loss.

In order to show the resilience of this approach,
we now assume that node PC v2 loses its processing
capabilities, but can still freely transfer data. A
simple solution would be to send all its allocated
fusion functions to the vehicle v1 SOTAS node.
However, to minimize the processing requirements

on the latter, and due to no connection available with
v4, the process manager chooses instead to send
the raw data to v3 and let it handle the required
functions. This solution, illustrated in Figure 16,
allows the fusion engine to preserve the SA and its
continuous estimates of the red forces whereabouts.

6. CONCLUSION
Vehicles and vehicle-associated sensors are

crucial elements for information-based operations.
To get efficient, actionable, timely, and consistent
situational awareness in this constrained domain,
an approach is required to fuse the information
from heterogeneous sensors. Furthermore, to
fully exploit the trade-offs between information
processing and bandwidth in the field, one needs to
distribute fusion processes and dynamically allocate
the fusion functions to processing nodes, which
can have specialized computational capacities or
communication potential. In this way rich actionable
information can be distilled from disparate sensors,
while optimally exploiting the computing and
networking resources in the mobile tactical domain.

This paper introduces a novel modular
architecture addressing these challenges. It combines
a distributed fusion engine based on hybrid AI
correlating the heterogeneous data, an intelligent
process manager optimizing resources allocation
according to communication and processing
capacities, and a system of ruggedized computing
and communication hardware. The integrated
approach has been illustrated with a red forces
tracking example involving multiple vehicles
and heterogeneous sensors. Ruggedized mobile
computers on vehicles interface sensors and host a
system of fusion algorithms that are dynamically
combined into an efficient surveillance solution,
optimally adapted to mission constraints. The
used example illustrates principles and properties
that apply to many different types of solutions,
not just red forces tracking. It enables a robust
and efficient implementation of complex models
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and inference processes spanning an ad-hoc system
of networked computing nodes in the field. The
ruggedized computing nodes provide a robust and
stable processing platform, the modular fusion
engine supports distribution of algorithms over
the computing nodes and their composition into
advanced fusion solutions, while the intelligent
process manager relies on the formalization of a
new optimization problem to determine on which
computing nodes different fusion components should
be used.

As further work, we notably plan to implement
the optimization algorithm discussed in Section 3.3,
and compare it with our current brute-force method.
Finally, while the Heterogeneous Fusion Engine and
the SOTAS components have been tested in various
physical settings, real world experiments will be
repeated with the integrated solution.
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